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Abstract—we discuss the application of the Generalized 

Perturbation Theory (GPT) to the reliability of a system of three 

equal protection channels of an industrial plant. The influence of 

parameters such as the demand rate and the failure rate over the plant 

accident rate is discussed. Traditional methods have been used to 

study the influence of these parameters on the plant accident rate in 

which the system of differential equations derived from the Markov 

approach adopted is solved for each value of the demand rate. From 

the solution of this system of equations, curves for the accident 

frequency depending on the demand rate (direct calculation) are 

obtained. However, it is possible to obtain these curves by GPT in a 

faster way, wherein the calculation effort may be reduced by a factor 

of up to 10. It was found that for demand rates lower than 1000 / 

year, GPT calculations with 3rd and 5th orders of approximations of 

gave better results than those with 1st order approximation when 

compared to direct calculation. However, for demand rates equal or 

greater than 1000 / year, the 1st order approach presented better 

results than the 3rd and 5th orders. 

 

Keywords—Demand rate, Generalized Perturbation Theory, 

Markovian reliability analysis, Plant accident rate.  

I. INTRODUCTION 

NDUSTRIAL facilities are equipped with systems whose 

sole function is to protect the public, their personnel and 

equipment against destructive effects caused by accidents in 

which radioactive, toxic or flammable substances may be 

released into the environment. 
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Typically, protective systems are periodically tested standby 

safety systems whose reliability figure of merit is their mean 

unavailability. This depends on the failure and repair rates of 

its constituent channels, on the test and maintenance policies 

imposed as well as on the system logic configuration. 

However, from the point of view of safety, the facilities 

parameter that really matters is the accident (or hazard) rate. 

It has been common practice to evaluate the plant accident 

rate as the product of the frequency of occurrence of the 

initiating event (also known as demand rate) by the protective 

system mean unavailability, where one assumes that the latter 

is independent of the former. This is a valid assumption only if 

the demand rate is low (typically less than 10/year) as happens 

to be for most initiating events in nuclear power plants. 

Nevertheless, a significant effect of the demand rate on the 

plant accident rate may be found whenever the former assumes 

higher values. This influence has already been detected and 

discussed for some special cases [1]–[3].  

As practical experience has shown, we consider that 

protective systems may have up to five identical channels for 

then we will be covering 90% of actual systems under current 

usage. 

Markovian models have been used in order to model the 

plant accident rate by taking into account the interdependence 

between the demand rate and the unavailability of the 

protective system. 

Markovian models consider the possibility of performing 

repair on the protective system both with the plant online as 

well as offline. In many instances, the first policy is not 

allowed. Besides, for those situations where an accident has 

occurred and the protective system did not perform properly, 

repair is not performed on it for the whole plant is already 

under damage. This situation is also modeled here. 

As demand rates may be as high as 10,000/year, sensitivity 

analyses on the plant accident rate may require extensive 

calculations. For this reason, the generalized perturbation 

theory has been considered as an interesting option for facing 

the problem [4]. One of the advantages of GPT is the fact that 

it requires a reference solution for the plant accident rate and it 

may generate results by perturbing one or more parameters at 

the same time, thus considerably reducing the computer effort. 

GPT is a heuristic method [5] widely used by the nuclear 

engineering community, as, for example, in reactor physics [6] 

and thermal hydraulics analysis [7]–[8]. 

The possibility of applying GPT to reliability analysis based 

on Markov models was discussed in [9]. The behavior of plant 

accident frequency as a function of failure rates and system 

demand was analyzed in [4]. 
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Several studies published in the reliability area confirm the 

importance of determining the accident frequency of a plant on 

the basis of failure and demand rates [1]–[3]. Seeking to 

extend the application of GPT to this problem, this work 

makes a sensitivity analysis of the accident frequency of a 

plant equipped with a system of three protection channels. 

As we are discussing a trip channel system with redundancy, 

it is necessary to consider the possibility of occurrence of 

common-cause failures. There are some models that treat 

common-cause failures, such as the basic parameter model, the 

multiple Greek letter model, and the  factor model [10]. In 

this work, we used the  factor model. The reason for 

choosing this model is that it is relatively simple to obtain its 

parameter values in practice. 

II. THE THREE-CHANNEL PROBLEM 

The reliability attribute of interest for protective systems is 

their average unavailability (U), which depends on the 

component (channel) failure rate (), repair rate (μ), human 

failure probability during maintenance activities () and also 

on the number of repairmen available. From the point of view 

of plant safety analysis, the parameter that matters is the 

accident frequency (), given by the product between the 

frequency of the initiating event, also called demand rate (), 

and the average unavailability of the protective system, 

U(,µ), where it is tacitly assumed that the latter is 

independent of the first. However, a significant effect of the 

demand rate on the average availability of the protective 

system can be found whenever the first assumes higher values 

(>10/year, in general [2]). This influence has been analyzed in 

practice (e.g., systems with up to two redundant channels [3]). 

Thus, in such cases, one should write: 

 

  ,,.U                  (1) 

 

We assume a three-channel protective system subject to a 2 

– 3 : F, which means that the protective system failure occurs 

whenever at least 2 channels fail. The system unavailability 

will be modeled by means of a Markov chain because we need 

to model system repair and also unrevealed channel failures. 

The state transition diagram for the protective system with 

three identical channels and revealed failures under a 2 – 3: F 

logic may be seen in Figure 1. 

The parameters in the triplets < i, j, k > shown in Figure 1 

represent: i = number of operating channels, j = number of 

failed channels whose failures are unrevealed, and k = number 

of failed channels whose failures are revealed. 

In Fig. 1 k
 
represents the failure rate of k channels that have 

failed due to common causes (common-cause failures). The 

transition from state 1 to state 7 means that all channels have 

failed due to that cause. The transition rate from state 1 to state 

2 means that only one channel failure has occurred but there 

are 3 different ways because there are 3 channels on in state 1. 

As the number of repairmen is equal to the number of 

channels, the transition from state 10 to state 6 is equal to 3(1-

), meaning that each failed channel is assigned a repairman. 

For the case of the transition from state 10 to state 8 an 

unrevealed channel failure is assumed as a result of 

maintenance but again 3 repairmen are available. 
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Fig. 1 State transition diagram for the 3-channel protective system 

 

Due to the assumption of performing maintenance only 

when the plant is online, states 6, 9 and 10 will not be taken 

into account when evaluating the plant accident rate, as will be 

discussed later. 

The approach for treating common-cause failures is based 

on the  model [10]. 

The  model [10] is based on multi-parameter generalized 

parameters that are related to the events known with the 

purpose of estimating in a direct way, the basic event common-

cause probabilities.  can be defined as the fraction of events 

involving the failure of a particular component due to a 

common cause. 

The probability of simultaneous failure of k and only k 

components due to a common cause is given by [10]: 

 







t

k
k

k

m

m









                  (2) 

where 

 





m

k

kt k

1

 .                   (3) 

 

and m stands for the number of equal protective system 

channels. 

The parameter k is subject to the following condition: 

 





m

k

k

1

1                    (4) 

 

As there are three equal protective channels, then m = 3 and 

Eq. (2) is written as: 
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From Eq. (5), one can write: 

 

213 1                    (6)  

 

Putting Eq. (6) in Eq. (5) with k = 1, 2, and 3 one has: 
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which are the system failure rates as a function of parameters  

1 e 2. 

The differential equation that governs the system behavior is 

given by: 

 

 
 tpM

dt

tpd
                  (10) 

 

where  tp  is a vector defined as follows: 

 

 Ttptptp )(...,),()(
101

             (11)
 

 

and pi(t); i = 1,2,...,10, represents the probability that the 

system is in the i-th state and M  is the transition rate matrix, 

given by: 
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                       (12) 

 

where: 

 

 32111 33  ,M  

   2122 2,M  

   2133 2,M  

   144 ,M  

   155,M  

  2166 ,M  

77 ,M  

  88,M  

  299 ,M  

31010 ,M  

 

As this is an initial value problem, an initial condition must 

be specified. It is considered that all channels are initially on, 

so that: 

 

   Tp 00000000010         (13) 

 

As the failure logic is given by 2 – 3:F, so that there must 

occur at least two channel failures for the system to fail, the 

plant accident rate, , is given by [2]: 
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Eq. (14) takes into account that on-line repair is feasible. As 

we are not going to take this policy into account (as discussed 

in [4]), then only the offline repair policy will be taken into 

account, so that Eq. (14) may be rewritten as: 
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which may be recast into: 
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where 
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and 

 

   T
T

tp 0011011000        (18) 

 

The perturbation in parameters 1 and  will give us a new 

accident rate ’, which can be obtained by a Taylor series 

expansion: 
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where one obtains from Eq. (16): 
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and 
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The derivatives of p(t) with respect to 1 and  parameters 

are the solutions of the following equations: 
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whose source terms are as follows: 
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with 
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,M  

 2122 2  '
,M  

 2133 2  '
,M  
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However, according to the source reciprocity relationship 

[11], Eqs. (20)– (22) may be recast into: 
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where p*(t), the importance function associated to the integral 

quantity  is the solution of the following equation: 

 

TTT htpMtp
dt

d  )(*)(*           (36) 

 

Putting Eqs. (33)–(35) into Eqs. (20)–(22), respectively, and 

the resulting equations in Eq. (19), one obtains: 
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(37) 

 

where the source terms  11 SandSS , where defined in 

Eqs. (26)–(28). 

Eq. (37) is used for performing the sensitivity analysis for 

the plant accident rate. Note that the use of the importance 

concept and of source terms characterizes the use of the 

generalized perturbation theory. 

III. CASE STUDIES 

To use GPT for performing the sensitivity analysis on the 

accident frequency of a plant   (using a system of three equal 

protection channels), the system demand rate  and 1 

(fraction of events involving the failure of a particular 

component due to a common cause) were perturbed. 

The input data used is presented in Table 1 [2]–[3].  

 
Table 1 Input parameters 

 

Parameter Symbol Value 

Proof test interval p 1 yr 

Channel failure rate  10/yr 

Channel repair rate  365/yr 

Human failure probability during 

channel repair 
 0.01 

Probability of two channel failures 

due to common-cause failure 
2 0.1 

 

Moreover, parameter 1 was varied as follows: 

 

1 = 0,7 + 0,05(n – 1),  n = 1,...,5           (38) 

 

The reference value for parameter 1was assumed as 0.8. The 

value assumed for 2 is presented in Table 1. This means that 

we are assuming a 10% probability of two simultaneous 

channel failures due to common causes. 

In the sensitivity studies for each 1 value, variations of  

according to Table 2 were adopted. That is, for each case 

shown, were a different interval for  is defined, the  values 

in these ranges are given according to equation in the last 

column of the table. Also, a reference value for the demand 

rate is set, as also shown in the table. 
 

Table 2 Perturbed demand rates 

 

Case Range 

(yr
-1

)   
Ref 

(yr
-1

)  

Perturbed parameter value 

(yr
-1

) 

1 1   9 5 1+1(n-1); n=1,...,9 

2 10   50 30 10+5(n-1); n=1,...,9 

3 55    95 75 55+5(n-1); n=1,...,9 

4 100    300 200 100+25(n-1); n=1,...,9 

5 300    500 400 300+25(n-1); n=1,...,9 

6 500    750 625 500+25(n-1); n=1,...,11 

7 750    1000 875 750+25(n-1); n=1,...,11 

8 1000    2000 1500 1000+250(n-1); n=1,...,5 

9 2000    3000 2500 3000+250(n-1); n=1,...,5 

10 3000    4000 3500 3000+250(n-1); n=1,...,5 

11 4000    6000 5000 4000 + 250(n-1); n=1,...,9 

12 6000    10000 8000 6000 + 500(n-1); n=1,...,9 

 

Sensitivity calculations using GPT mean solving the system 

of differential equations of Eq. (2) 60 times since there are 12 
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reference values for the demand rate and 5 values for the 1 

parameter [Eq. (38)] were adopted (see Table 2). 

Comparatively, the results presented in [12] required the 

solution of the same system more than 600 times. 

IV. RESULTS AND DISCUSSION 

Figure 2 shows the sensitivity analysis performed on the 

plant accident rate for 1 = 0.75. The curves for the direct 

solution and for the perturbations considering the first, third 

and fifth orders expansions terms are displayed [Eq. (37)]. 

Figs. 2 – 5 display the sensitivity analysis for 1 = 0.75, 0.8, 

0.85, and 0.95, respectively. It can be seen that the results 

involve the presentation of the direct solution and of the 

perturbed solutions with different Taylor expansion orders. 
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Fig. 2 Sensitivity analysis for 1 = 0.75 
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Fig. 3 Sensitivity analysis for 1 = 0.8 
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Fig. 4 Sensitivity analysis for 1 = 0.85 
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Fig. 5 Sensitivity analysis for 1 = 0.9 

 

 
 

It was found that for all values of 1, the 3rd and 5th 

approximation orders were better for  <1,000/year, whereas 

for  > 1,000/year, the 1st order approximation is better. 

For  < 1,000/year, the accident frequency as a function of 

the demand rate increases rapidly, with the need to use higher-

order Taylor series to represent the function in this range. 

Therefore, the approaches of 3rd and 5th orders were better, 

while the approach of 1st order came to have a deviation of up 

to 8.8% for  = 100 / year, Figure 5. 

For  > 1,000 / year, the accident rate is almost asymptotic 

and its derivatives of higher orders are close to zero. As the 

approach of 1st order does not use these derivatives, their 

results are better in this range. The approaches of 3rd and 5th 

orders use these derivatives and therefore tend to increase the 

deviation, reaching 12.6% for  = 6,500/year for the 5th order 

approach. 
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I. CONCLUSIONS 

The purpose of this paper was to analyze the sensitivity of a 

three-channel protective system, considering as an integral 

quantity of interest, the plant accident rate. The system 

sensitivity analysis was quite satisfactory and GPT is 

recommended GPT to perform sensitivity analyses because the 

computational effort is reduced by a factor of 10. 

It can be seen from the results shown that the 1st, 3rd and 

5th approximations orders showed good results in relation to 

the direct calculation at well-defined intervals as discussed. 

This behavior holds true for the other 1values. Therefore, we 

recommend the use of GPT in this type of approach and other 

problems. For future work, such as the use of up to 5 

protection channels, we recommend using the GPT. However, 

one must analyze what approximation to use for the demand 

rate intervals. 

Another important feature is the consideration of channel 

aging. 

It is important to discuss the influence of channel aging on 

the protective system unavailability and also plant maintenance 

policies that significantly affect the plant accident rate. This 

consideration is justified by the fact that the assumption of 

channel useful life (that is, exponential failure times) may be 

too restrictive due to plant stressing conditions. An initial 

discussion on this may be found elsewhere [13]. 
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